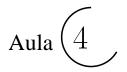
Polos Olímpicos de Treinamento

Curso de Álgebra - Nível 2 Prof. Marcelo Mendes



Recorrências - Parte I

Na aula anterior, vimos alguns exemplos de sequências. Em alguns deles, os termos são dados em função de termos anteriores, ou seja, eles recorrem a valores de termos anteriores. Por isso, essas sequências são chamadas de **recorrências**.

Talvez os exemplos mais clássicos de sequências recorrentes sejam as progressões aritmética e geométrica, que veremos neste texto.

1 Progressões Aritméticas

O problema 6 da aula anterior é um exemplo de P.A. Por definição, uma P.A. é uma sequência em que a diferença entre os termos consecutivos é constante. Daí, se (a,b,c) é uma P.A., então b-a=c-b, ou então, 2b=a+c, isto é, $b=\frac{a+c}{2}$, ou seja, cada termo de uma P.A. é a média aritmética dos termos adjacentes. Essa propriedade, portanto, justifica o nome desse tipo de sequência.

Sendo d o valor da diferença constante (tradicionalmente chamada de razão), temos a seguinte lei de formação para os termos de uma P.A. $\{a_n\}$

$$a_n = a_{n-1} + d.$$

Mas veja que essa é uma fórmula implícita, recorrente, que necessita de valores anteriores para se achar o valor de um determinado termo. Somando telescopicamente várias dessas equações

$$a_n = a_{n-1} + d$$

$$a_{n-1} = a_{n-2} + d$$

$$\vdots$$

$$a_3 = a_2 + d$$

$$a_2 = a_1 + d$$

chegamos a

$$a_n = a_1 + (n-1)d,$$

que é a fórmula clássica para o termo geral de uma P.A. Todavia, pode ser mais interessante em determinados problemas a fórmula

$$a_n = a_m + (n-m)d \Leftrightarrow a_n - a_m = (n-m)d$$

que, ao invés de depender do valor do termo a_1 , calcula a_n a partir de qualquer outro termo a_m , podendo este, inclusive, ser posterior.

Essa fórmula nos permite concluir que $a_1 + a_n = a_2 + a_{n-1} = a_3 + a_{n-2} = \dots$ Daí, somando as duas equações a seguir

$$S = a_1 + a_2 + \dots + a_{n-1} + a_n$$

$$S = a_n + a_{n-1} + \dots + a_2 + a_1$$

chegamos a

$$S = \frac{(a_1 + a_n) n}{2}.$$

Problema 1. (EUA) Os quatro primeiros termos de uma P.A. são a, x, b, 2x. Determine o valor da razão $\frac{a}{b}$.

Solução. Temos 2x = a + b e 2b = x + 2x. Assim, $\frac{a+b}{2} = \frac{2b}{3}$ e, portanto, $\frac{a}{b} = \frac{1}{3}$.

Problema 2. (IME) Determine a relação que deve existir entre os números m, n, p, q para que se verifique a seguinte igualdade entre os termos de uma mesma progressão aritmética não-constante:

$$a_m + a_n = a_p + a_q.$$

Problema 3. Encontre o valor de $a_2 + a_4 + a_6 + ... + a_{98}$ se $a_1, a_2, a_3, ...$ é uma P.A. de razão 1 e $a_1 + a_2 + a_3 + ... + a_{98} = 137$.

Solução. Podemos escrever $a_1 + a_2 + ... + a_{97} + a_{98} = 137$ como $(a_2 - 1) + a_2 + ... + (a_{98} - 1) + a_{98} = 137$. Daí, $2(a_2 + a_4 + a_6 + ... + a_{98}) - 49 = 137$ e, portanto, $a_2 + a_4 + a_6 + ... + a_{98} = \frac{137 + 49}{2} = 93$.

Problema 4. (EUA) Seja $a_1, a_2, ..., a_k$ uma progressão aritmética finita com $a_4 + a_7 + a_{10} = 17$ e $a_4 + a_5 + a_6 + ... + a_{12} + a_{13} + a_{14} = 77$. Se $a_k = 13$, determine o valor de k.

Problema 5. Calcule a soma dos 1000 primeiros múltiplos positivos de 7.

Problema 6. Um jardineiro tem que regar 60 roseiras plantadas ao longo de uma vereda retilínea e distando 1m uma da outra. Ele enche seu regador, a 15m da primeira roseira, e, a cada viagem, rega 3 roseiras. Começando e terminando na fonte, qual é o percurso total que ele terá que caminhar até regar todas as roseiras?

Problema 7. Observe a disposição, abaixo, da sequência dos números naturais ímpares.

$$\begin{array}{llll} 1^a & \mathbf{linha} & 1 \\ 2^a & \mathbf{linha} & 3,5 \\ 3^a & \mathbf{linha} & 7,9,11 \\ 4^a & \mathbf{linha} & 13,15,17,19 \\ 5^a & \mathbf{linha} & 21,23,25,27,29 \\ \vdots & \vdots & \vdots \end{array}$$

Determine o quarto termo da vigésima linha.

Problema 8. (Espanha) Encontre uma P.A. tal que a soma de seus n primeiros termos seja igual a n^2 para qualquer valor de n.

Solução. Veja que

$$S_n = a_1 + a_2 + \dots + a_n = n^2.$$

Com n = 1, obtemos $S_1 = a_1 = 1$ e, com n = 2, $S_2 = a_1 + a_2 = 4$. Logo, $a_2 = 3$. Assim, a razão da P.A. é $a_2 - a_1 = 3 - 1 = 2$. Portanto, a P.A. procurada é 1, 3, 5, 7, ...

Problema 9. (IME) O quadrado de qualquer número par 2n pode ser expresso como a soma de n termos, em progressão aritmética. Determine o primeiro termo e a razão da progressão.

Problema 10. (ITA) Provar que se uma P.A. é tal que a soma dos seus n primeiros termos é igual a n+1 vezes a metade do n-ésimo termo, então $r=a_1$.

Solução. Pelo enunciado, temos

$$S_n = (n+1)\frac{a_n}{2} \Leftrightarrow \frac{(a_1 + a_n)n}{2} = (n+1)\frac{a_n}{2} \Leftrightarrow a_1 \cdot n = a_n$$

$$\Leftrightarrow a_1 \cdot n = a_1 + (n-1)r \Leftrightarrow a_1(n-1) = (n-1)r, \forall n.$$

Portanto, $a_1 = r$.

Problema 11. Numa P.A., tem-se $\frac{S_m}{S_n} = \frac{m^2}{n^2}$, sendo S_m e S_n as somas dos m primeiros termos e dos primeiros n termos, respectivamente, com $m \neq n$. Prove que a razão da P.A. é o dobro do primeiro termo.

Problema 12. Se numa P.A. a soma dos m primeiros termos é igual à soma dos n primeiros termos, $m \neq n$, mostre que a soma dos m + n primeiros termos é igual a zero.

Problema 13. (OCM) Mostre que $\sqrt{2}, \sqrt{3}, \sqrt{5}$ não podem ser termos de uma mesma progressão aritmética.

Problema 14. Cada uma das progressões aritméticas a seguir tem 80 termos: $(a_n) = (9, 13, ...)$ e $(b_n) = (10, 13, ...)$. Quantos números são, ao mesmo tempo, termos das duas progressões?

Problema 15. Numa P.A., temos $a_p = q$ e $a_q = p$, com $p \neq q$. Determine a_1 e a_{p+q} .

Problema 16. (EUA) Se a soma dos 10 primeiros termos e a soma dos 100 primeiros termos de uma progressão aritmética são 100 e 10, respectivamente, determine a soma dos 110 primeiros termos.

Solução. Vamos escrever os dados do problema da seguinte forma

$$(a_1 + \dots + a_{10}) + (a_{11} + \dots + a_{20}) + \dots + (a_{91} + \dots + a_{100}) = 10$$

 $(a_1 + \dots + a_{10}) + (a_1 + \dots + a_{10}) + \dots + (a_1 + \dots + a_{10}) = 100 \cdot 10$

Subtraindo termo a termo, obtemos

$$0 \cdot 10 + 10r \cdot 10 + \dots + 90r \cdot 10 = -900$$

$$\Rightarrow 100r(1+...+9) = -900 \Rightarrow r = -\frac{1}{5}.$$

Portanto

$$a_1 + \dots + a_{110} = (a_1 + \dots + a_{100}) + (a_{101} + \dots + a_{110})$$
$$= 10 + [(a_1 + 100r) + \dots + (a_{10} + 100r)]$$
$$= 10 + (a_1 + \dots + a_{10}) + 1000r = 10 + 100 - 200 = -90.$$

Problema 17. (EUA) Em uma P.A., a soma dos 50 primeiros termos é 200 e a soma dos 50 próximos é 2700. Determine a razão e o primeiro termo dessa següência.

Problema 18. (EUA) A soma dos n primeiros termos de uma P.A. é 153 e a razão é 2. Se o primeiro termo é um inteiro e n > 1, determine o número de valores possíveis de n.

Solução. Como $\frac{(a_1 + a_n)n}{2} = 153$, temos $[a_1 + (n-1)]n = 153$. Como $a_1 + (n-1)$ e n são inteiros positivos, eles são divisores positivos de 153. Mas $153 = 3^2 \times 17$ e, portanto, 153 possui 6 divisores positivos, sendo 5 deles maiores que 1.

Problema 19. (EUA) A soma dos n primeiros termos de uma P.A. é x e a soma dos n seguintes é y. Calcular a razão.

Problema 20. A sequência $1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, \dots$ consiste de 1s separados por blocos de 2s, com n 2s no n-ésimo bloco. Determine a soma dos 1234 primeiros termos dessa sequência.

Problema 21. Mostre que $2008^{2007^{2006}}$ é um termo da P.A. infinita (6, 13, 20, 27, ...).

Problema 22. (EUA) Os três primeiros termos de uma progressão aritmética são 2x - 3, 5x - 11 e 3x + 1, respectivamente. O *n*-ésimo termo da sequência é 2009. Quel é o valor de n?

Problema 23. (EUA) Os quatro primeiros termos de uma progressão aritmética são $p, 9, 3p-q \in 3p+q$. Qual é o 2010° termo dessa sequência?

2 Progressão Geométrica

Semelhante ao que escrevemos para P.A., por definição, uma P.G. é uma sequência em que cada novo termo, a partir do segundo, é o produto do termo anterior por uma constante. Daí, se (a, b, c) é uma P.G., então $b^2 = ac$.

Sendo q o valor da razão constante, temos a seguinte lei de formação para os termos de uma P.G. $\{a_n\}$

$$a_n = a_{n-1} \cdot q.$$

Mas veja que essa também é uma fórmula implícita, recorrente, que necessita de valores anteriores para se achar o valor de um determinado termo. Multiplicando telescopicamente várias dessas equações

$$a_n = a_{n-1} \cdot q$$

$$a_{n-1} = a_{n-2} \cdot q$$

$$\vdots$$

$$a_3 = a_2 \cdot q$$

$$a_2 = a_1 \cdot q$$

chegamos a

 $a_n = a_1 \cdot q^{n-1},$ que é a fórmula clássica para o termo geral de uma P.G.

A fórmula da soma dos n primeiros termos é

$$S_n = a_1 \cdot \frac{q^n - 1}{q - 1},$$

se $q \neq 1$ e $S_n = a_1 \cdot n$, se q = 1, e a fórmula do produto dos n primeiros termos pode ser apresentada de 2 maneiras

$$P_n = a_1^n \cdot q^{\frac{n(n-1)}{2}}$$

ou

$$P_n^2 = (a_1 \cdot a_n)^n \,.$$

Problema 24. (EUA) Suponha que x, y, z estejam em P.G. de razão r e $x \neq y$. Se x, 2y, 3z estão em P.A., determine o valor de r.

Solução. Temos $y=x\cdot r$ e $z=x\cdot r^2$ pela P.G. Pela P.A., segue que 4y=x+3z. Logo, $4xq=x+3xq^2$. Se x=0, então y=0=x, o que não pode ocorrer. Daí, $3q^2-4q+1=0$, cujas soluções são q=1 e $q=\frac{1}{3}$. Como q=1 implica x=y, concluímos que $q=\frac{1}{3}$.

Problema 25. Se (a, b, c) formam, nesta ordem, uma P.A. e uma P.G. simultaneamente, mostre que a = b = c.

Solução. Por ser P.A., temos $b = \frac{a+c}{2}(*)$ e, por ser P.G., $b^2 = ac$. Logo, $\left(\frac{a+c}{2}\right)^2 = ac$, ou seja, $(a-c)^2 = 0$. Assim, a = c e, por (*), a = b = c.

Problema 26. (OCM) Determine a soma dos n primeiros termos da sequência:

$$1, (1+2), (1+2+2^2), (1+2+2^2+2^3), ..., (1+2+2^2+2^3+...+2^{k-1}).$$

Problema 27. 6. Mostre que não existe P.G. de três termos distintos tal que, ao somarmos um mesmo número real não-nulo a todos os seus termos, a nova sequência seja também uma P.G.

Problema 28. (EUA) Numa P.G. de 2n termos, a soma dos termos de ordem par é P e a soma dos termos de ordem ímpar é I. Calcule o 1^o termo e a razão.

Solução. De
$$a_2 + ... + a_{2n} = P$$
, segue que $q \cdot (a_1 + ... + a_{2n-1}) = P$ ou $q \cdot I = P$. Logo, $q = \frac{P}{I}$. Além disso, $P = a_2 \cdot \frac{\left(q^2\right)^n - 1}{q - 1} = a_1 \cdot \frac{q^{2n+1} - q}{q - 1}$. Logo, $a_1 = \frac{(P - I)I^{2n}}{P^{2n} - I^{2n}}$.

Problema 29. Prove que, quando os lados de um triângulo estão em P.G., o mesmo ocorre para as alturas.

Problema 30. Sejam a, b, c números reais não-nulos, com $a \neq c$, tais que $\frac{a}{c} = \frac{a^2 + b^2}{c^2 + b^2}$. Prove que a, b e c formam uma P.G.

Problema 31. (EUA) O 5° e o 8° termos de uma progressão geométrica de números reais são 7! e 8!, respectivamente. Qual é o 1° termo?

2 Recorrências Lineares de Ordem 2 - Parte I

Por fim, vamos estudar apenas as recorrências em que a *equação característica* possui raiz real dupla. Mas o que é uma equação característica? Vejamos.

Considere a recorrência linear de ordem 2 (isto é, só depende dos 2 termos imediatamente anteriores)

$$a_n = pa_{n-1} + qa_{n-2}.$$

A equação característica dessa recorrência é a equação quadrática formada repetindo os mesmos coeficientes da recorrência, ou seja,

$$x^2 = px + q \Leftrightarrow x^2 - px - q = 0.$$

Mas como surge essa equação? A resposta será dada no texto da aula seguinte. Por enquanto, acredite.

Como exemplo, considere uma recorrência definida por $a_1 = 1$, $a_2 = 3$ e, para $n \ge 3$, $a_n = 2a_{n-1} - a_{n-2}$. A equação característica associada é $x^2 - 2x + 1 = 0$, que possui duas raízes iguais a 1. Entrementes, uma olhadinha mais cuidadosa mostra que a recorrência em questão é de uma P.A. pois

$$a_n = 2a_{n-1} - a_{n-2} \Leftrightarrow a_n - a_{n-1} = a_{n-1} - a_{n-2}.$$

Portanto, acabamos de ver que uma P.A. está associada a uma equação característica com raiz dupla 1.

Agora, vejamos outro exemplo, uma recorrência em que $a_1 = 6$, $a_2 = 27$ e, para $n \ge 3$, $a_n = 6a_{n-1} - 9a_{n-2}(*)$. A equação característica associada é $x^2 - 6x + 9 = 0$, cujas raízes são iguais a 3. A saída agora é criar uma nova sequência $\{b_n\}$ dada por $a_n = 3^n b_n$. Substituindo em (*), chegamos a $b_n = 2b_{n-1} - b_{n-2}$, o que mostra que $\{b_n\}$ é uma P.A.! Assim, sendo $b_n = A + Bn$ (o termo geral de uma P.A. é uma função polinomial do 1^o grau em função de n ou uma função constante no caso em que a P.A. é constante), obtemos

$$a_n = 3^n (A + Bn).$$

Para acharmos $A \in B$, fazemos n assumir os valores 1 e 2:

$$\begin{cases} 6 = a_1 = 3(A+B) \\ 27 = a_2 = 9(A+2B) \end{cases}$$

cujas soluções são A = B = 1 e, portanto,

$$a_n = 3^n(n+1).$$

Problema 32. Resolva a recorrência $a_1 = 4$, $a_2 = 20$ e, para $n \ge 3$, $a_n = 4a_{n-1} - 4a_{n-2}$.

Problema 33. Resolva a recorrência $a_1 = 8$, $a_2 = 96$ e, para $n \ge 3$, $a_n = 8a_{n-1} - 16a_{n-2}$.

Problema 34. Considere a sequência (a_n) dada por $a_1 = 1$, $a_2 = 3$ e $a_n = 10a_{n-1} - 25a_{n-2}$, para n > 2. Determine o valor de k, dado por $a_n = k^n b_n$ tal que a sequência (b_n) seja uma P.A.

Problema 35. (IME) Considere a sequência $\{v_n\}$, n=0,1,2,... definida a partir de seus dois primeiros termos v_0 e v_1 e pela fórmula geral $v_n=6v_{n-1}-9v_{n-2}$, para $n\geq 2$. Define-se uma nova sequência $\{u_n\}$, n=0,1,2,... pela fórmula $v_n=3^nu_n$.

- a) Calcule $u_n u_{n-1}$ em função de u_0 e u_1 .
- b) Calcule u_n e v_n em função de n, v_1 e v_0 .
- c) Identifique a natureza das sequências $\{v_n\}$ e $\{u_n\}$ quando $v_1 = 1$ e $v_0 = \frac{1}{3}$.

Dicas

- 2. Use $a_i a_j = (i j)r$, sendo r a razão.
- 9. Veja o problema 8.
- 13. Suponha, sem perda de generalidade que $\sqrt{2}, \sqrt{3}, \sqrt{5}$ sejam o primeiro, o m-ésimo e o n-ésimo termos, respectivamente. Use a fórmula do termo geral em a_m e a_n , isole a razão em cada uma e iguale essas expressões. Depois, utilize que $\sqrt{2}, \sqrt{3}$ e, em geral, \sqrt{k} , em que k é um número natural não quadrado perfeito, são números irracionais.
- 14. O primeiro termo em comum é 13 e a razão dos termos em comum é mmc(4,3) = 12, já que 3 e 4 são as razões iniciais.
- 15. Use $a_i a_j = (i j)r$, sendo r a razão.
- 17. Veja a solução do problema 16 ou use a fórmula da soma (que dará mais trabalho).
- 19. Veja a sugestão do problema 17.
- 21. Os termos da P.A. em questão são da forma 7k+6 ou 7k-1. Assim, basta achar o resto de $2008^{2007^{2006}}$ na divisão por 7.
- 26. Calcule cada uma das somas parciais separadas por vírgulas no enunciado e, em seguida, calcule a soma dos resultados. Nas duas etapas, use a fórmula da soma da P.G.
- 29. Use que a área de um triângulo é $\frac{bh}{2}$.

Respostas

- 2. m + n = p + q
- 4. 18
- 5. 3503500
- 6. 1820
- 7. 387
- 9. $a_1 = 4 e r = 8$
- 14. 20
- 15. $a_1 = q + p 1, a_{p+q} = 0$
- 17. r = 1 e $a_1 = -20, 5$
- $19. \ \frac{y-x}{n^2}$
- 20. 2419
- 22. 502
- 23. 8041
- 26. $2^{n+1} n 2$
- 31. 315
- 32. $2^n(3n-1)$
- 33. $4^n(4n-2)$
- 34. 5
- 35. a) $u_1 u_0$; b) $u_n = \frac{nv_1}{3} + (1-n)v_0$ e $v_n = 3^{n-1}nv_1 + 3^n(1-n)v_0$; c) $u_n = \frac{1}{3}$, sequência constante e $v_n = 3^{n-1}$, progressão geométrica