

Problemas Resolvidos

Nível 2

Algumas propriedades de triângulos

Problemas

Problema 1. Sejam ABC um triângulo e M o ponto médio de BC. Se AM = BM = CM, prove que $\angle BAC = 90^{\circ}$.

Problema 2. (Torneio das cidades) Sejam ABCD um paralelogramo, M o ponto médio de CD e H o pé da perpendicular baixada de B a AM. Prove que BCH é um triângulo isósceles.

Problema 3. Em um triângulo ABC, retângulo em A é isósceles, sejam D um ponto no lado AC $(A \neq C \neq D)$ e E o ponto no prolongamento de BA tal que o triângulo ADE é isósceles. Se P é o ponto médio de BD, R o ponto médio de CE e Q a interseção entre ED e BC, prove que o quadrilátero ARPQ é um quadrado.

Problema 4. Seja ABC um triângulo acutângulo tal que $\angle B = 2 \angle C$, AD é perpendicular a BC, com D sobre BC, e E o ponto médio de BC. Prove que AB = 2DE.

Problema 5. (China) Seja ABCD um trapézio, $AD \parallel BC, \angle B = 30^{\circ}, \angle C = 60^{\circ}, E, M, F, N$ os pontos médios de AB, BC, CD, DA, respectivamente. Se BC = 7, MN = 3, determine a medida de EF.

Problema 6. (China) Seja ABCD um trapézio, $AB \parallel CD$, $\angle DAB = \angle ADC = 90^{\circ}$, e o triângulo ABC é equilátero. Se a base média do trapézio $EF = \frac{3}{4}a$, determine o comprimento das duas bases do trapézio, em função de a.

Problema 7. (Moscou) Seja ABCD um quadrilátero convexo e O um ponto em seu interior tal que $\angle AOB = \angle COD = 120^{\circ}$, AO = OB, CO = OD. Sejam K, L, M os pontos médios de AB, BC, CD, respectivamente. Prove que $\triangle KLM$ é equilátero.

Problema 8. (OBM) No triângulo ABC, D é o ponto médio de AB e E ponto sobre o lado BC tal que $BE = 2 \cdot CE$. Sabendo que $\angle ADC = \angle BAE$, calculo o valor de $\angle BAC$.

Problema 9. Em um triângulo isósceles ABC, com AB = BC, sejam K, L pontos sobre AB, BC, respectivamente, tais que AK + LC = KL. A reta paralela a BC passando pelo ponto médio M de KL intersecta AC em N. Ache a medida de $\angle KNL$.

Soluções

- 1. Note que os triângulos $\triangle ABM$ e $\triangle ACM$ são isósceles com bases AB e AC, respectivamente. Logo teremos que $\angle ABM = \angle BAM$ e $\angle ACM = \angle CAM$. A soma dos ângulos interiores do $\triangle ABC$ será $180^{\circ} = \angle ABM + \angle BAM + \angle ACM + \angle CAM = 2(\angle BAM + \angle CAM) = 2\angle BAC$. Concluímos que $\angle BAC = 90^{\circ}$.
- 2. Seja E o ponto de encontro das retas AM e BC. Como $CM \parallel AB$ e $CM = \frac{CD}{2} = \frac{AB}{2}$, temos que CM é base média do $\triangle ABE$. Consequentemente teremos BC = CE. Note então que HC é mediana relativa à hipotenusa do triângulo retângulo $\triangle BHE$, logo BC = HC = EC. Isso mostra que o $\triangle BCH$ é isósceles.
- 3. Pelo critério l.a.l. podemos ver que $\triangle ABD \equiv \triangle ACE$ (AE = AD, AC = AB e $\angle CAE = \angle BAD = 90^{\circ}$). Veja então que AP e AR são medianas relativas à hipotenusa dos triângulos retângulos equivalentes ABD e ACE. Chamando de x o comprimento de AR e usando que a mediana relativa à hipotenusa de um triângulo retângulo é igual à metade da hipotenusa, podemos concluir que x = AR = ER = CR = AP = BP = DP.

Note também que QR e QP são as medianas relativas à hipotenusa dos triângulos retângulos $\triangle EQC$ e $\triangle BQD$, respectivamente. Logo QR = CR = ER = x e QP = BP = DP = x.

Acabamos de mostrar que o quadrilátero ARPQ têm todos os lados iguais a x, ou seja, é um losango. Mostraremos então que um dos seus ângulo internos, por exemplo $\angle PAR$, é reto. Para ver isso, note que $\triangle AER \equiv \triangle ADP$ (critério l.l.l.), então, em particular temos $\angle EAR = \angle PAD$. Finalmente teremos $\angle PAR = \angle DAR + \angle PAD = \angle DAR + \angle EAR = \angle DAE = 90^{\circ}$.

4. Chamemos $\angle C$ de α , logo teremos que $\angle B=2\alpha$. Seja F o ponto médio de AB, então EF é base média do $\triangle ABC$ relativa ao lado AC, logo $\angle BEF=\angle BCA=\alpha$.

Como DF é mediana relativa à hipotenusa do $\triangle ABD$ retângulo, temos que AF = BF = DF. Basta mostrar então que DF = DE.

Como $\triangle FBD$ é isósceles (com BF = FD), temos que $\angle FDB = \angle FBD = 2\alpha$. Como $\angle FDB$ é externo ao $\triangle FDE$, temos $\angle FDE = \angle DEF + \angle DFE$, ou seja, $2\alpha = \alpha + \angle DFE$, donde concluímos que $\angle DFE = \alpha$. Logo $\triangle DFE$ é isósceles com DE = DF como queríamos mostrar.

5. Seja P o ponto de interseção de BA e CD. Olhando para a soma dos ângulos internos do $\triangle BPC$, temos que $\angle BPC = 90^{\circ}$.

Como $AD \parallel BC$, a mediana PM do $\triangle BPC$ corta o segmento AD também no seu ponto médio, logo a interseção de PM com AD acontece justamente no ponto N.

Usando $\triangle BPC$ é retângulo e que PM é mediana relativa à hipotenusa, temos que $PM = \frac{BC}{2} = 3,5$. Logo PN = PM - MN = 3,5 - 3 = 0,5. Como PN também é mediana relativa à hipotenusa do $\triangle APD$ retângulo, temos $AD = 2PN = 2 \times 0,5 = 1$.

Por último, a como EF é a base média do trapézio ABCD, temos que $EF = \frac{BC + AD}{2} = \frac{7+1}{2} = 4$.

6. Antes de resolver o problema, mostraremos o seguinte resultado: Num triângulo retângulo ABC com $\angle A = 90^{\circ}$, $\angle B = 60^{\circ}$ e $\angle C = 30^{\circ}$. O cateto oposto ao ângulo de 30° é igual à metade da hipotenusa, ou seja, $AB = \frac{BC}{2}$. Para ver isso, considere o ponto médio M de BC. Logo teremos AM = BM = CM. Como $\angle B = 60^{\circ}$, o triângulo ABM, que já tínhamos que era isósceles, na verdade será equilátero. Logo $AB = BM = \frac{BC}{2}$, como queríamos mostrar.

Vamos resolver agora o exercício. Chamaremos de x o comprimento dos lados do $\triangle ABC$ equilátero, ou seja x = AB = BC = CA. Por serem ângulos alternos internos, temos que $\angle ACD = \angle BAC = 60^{\circ}$. Logo $\triangle ACD$ é um triângulo retângulo onde os ângulos agudos medem 60° e 30° . Pelo resultado citado no início, temos que $CD = \frac{AC}{2} = \frac{x}{2}$.

Temos então que a maior base do trapézio mede x e a menor mede $\frac{x}{2}$. Logo a base média será $\frac{3}{4}a = \frac{1}{2}(x + \frac{x}{2}) = \frac{3}{4}x$, donde concluímos que a = x.

Mostramos então que AB = a (base maior) e $CD = \frac{a}{2}$ (base menor).

7. Veja que $\triangle AOC \equiv \triangle BOD$ (critério l.a.l., pois AO = OB, $\angle AOC = \angle BOD = 120^{\circ} + \angle BOC$ e CO = OD). Consequentemente teremos AC = BD. Como KL e LM são bases médias dos triângulos ABC e BCD, respectivamente, temos que $KL = \frac{AC}{2} = \frac{BD}{2} = LM$. Para concluir, basta mostrar que $\angle KLM = 60^{\circ}.$

Chamemos de P o ponto de interseção das diagonais AC e BD. Note que, como $KL \parallel AC$ e $LM \parallel BD$ temos que $\angle KLM = \angle APD$. Logo será suficiente mostrar que $\angle APD = 60^{\circ}$, ou equivalentemente, $\angle CPD = 120^{\circ}$. Usando que $\triangle AOC \equiv \triangle BOD$, temos que, em particular, $\angle ACO =$ $\angle BDO$, logo, olhando para a soma dos ângulos internos dos triângulos $\triangle OCD$ e $\triangle PCD$, teremos que $\angle CPD = 120^{\circ}$, como queríamos mostrar.

- 8. Começaremos mostrando uma propriedade clássica de triângulos:
- Lema 1. As medianas de um triângulo se intersectam em um ponto, chamado baricentro, que divide cada mediana em dois segmentos cujos comprimentos estão na razão de 2 para 1.

Demonstração. Considere um $\triangle ABC$. Sejam K, L, M os pontos médios dos lados BC, AC, AB. Seja G o ponto de interseção de AK e BL. Mostraremos que $\frac{AG}{GK} = \frac{BG}{GL} = 2$. Para ver isso, note que KL é base média do $\triangle ABC$, logo $KL \parallel AB$ e $KL = \frac{AB}{2}$. Os triângulos $\triangle ABG$ e $\triangle KLG$ são semelhantes (veja que $\triangle BAG = \triangle GKL$ e $\triangle ABG = \triangle GLK$ por serem alternos internos), logo os seus lados se encontram na mesma proporção, ou seja, $\frac{AG}{GK} = \frac{BG}{GL} = \frac{AB}{KL} = 2$.

Analogamente, se chamarmos de G' o ponto de interseção das medianas AK e CM, teremos que $\frac{AG'}{G'K} = 2$. Ou seja, G e G' dividem o segmento AK na mesma proporção. Isso implica que G = G', o que sepalati a propor

que conclui a prova.

Vamos agora resolver o exercício. Seja F o ponto no prolongamento de AC tal que C é o ponto médio de AF. Veja então que BC é mediana do $\triangle ABF$ relativa ao lado AF, e, como E é o ponto na mediana que divide ela na proporção 2:1, temos que E é o baricentro do $\triangle ABF$. Chamando de Go ponto de interseção de AE com BF, temos então que G é ponto médio de BF.

Veja que CG e GD são bases médias do $\triangle ABF$, logo ADGC é um paralelogramo. Chamemos de H o ponto de interseção das diagonais AG e CD do paralelogramo ADGC, logo H é ponto médio de $AG \in CD$. Como $\angle ADC = \angle BAE$, temos que AH = HD, o que mostra que as diagonais do paralelogramo ADGC são iguais. Isso implica que ADGC é um retângulo e, portanto, $\angle BAC = 90^{\circ}$.

9. Seja P o ponto de interseção de AC com a reta que passa por K e é paralela a BC. Como $\angle APK = \angle ACB$ (ângulos correspondentes), temos que $\triangle AKP$ é isósceles com AK = KP. Temos que MN é a base média do trapézio KPCL, logo $MN = \frac{KP + LC}{2} = \frac{AK + LC}{2} = \frac{KL}{2}$. Logo, no $\triangle KNL$ a mediana MN relativa ao lado KL é igual à metade de KL, o que implica que $\angle KNL = 90^{\circ}$.