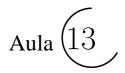
Polos Olímpicos de Treinamento

Curso de Teoria dos Números - Nível 2

Prof. Samuel Feitosa



Equações Diofantinas III

Já estudamos as equações diofantinas lineares e equações em que alguma fatoração conveniente poderia facilitar a busca por soluções. Nesta aula, estaremos interessados em encontrar módulos convenientes para analisar os termos de uma equação.

Exemplo 1. Encontre todas as soluções em inteiros da equação $x^2 - 7y = 1004$.

Analisando os restos na divisão por 7, obtemos $x^2 \equiv 3 \pmod{7}$. Entretando, os únicos inteiros que são restos de quadrados perfeitos na divisão por 7 são 0, 1, 2 e 4. Como $3 \equiv 1004 \pmod{7}$ não faz parte dessa lista, não existem soulções inteiras para a equação.

Exemplo 2. Encontre todas as soluções em inteiros da equação $x^3 + 98y^2 + 5 = 0$.

Analisemos os possíveis restos de $x^3 \pmod{7}$ fazendo uma tabela dos restos correspondentes de x e x^3 :

Como os únicos restos possíveis são $0, 1, -1 \pmod{7}$, o lado esquerdo da equação só pode deixar resto $5, 6, 4 \pmod{7}$. Como o resto do lado direito não faz parte dessa lista, não existem soluções em inteiros.

Exemplo 3. Prove que a equação $x^2 = 3y^2 + 8$ não possui soluções em inteiros x e y.

Analisando o resto na divisão por 3, obtemos $x^2 \equiv 2 \pmod{3}$. Como os únicos restos de um quadrado por 3 são 0 e 1, não existem soluções em inteiros.

Nos próximo problema, usaremos congruências para encontrarmos informações sobre as incógnitas envolvidas nos expoentes e buscaremos alguma fatoração apropriada para reduzir o problema à resolução de um sistema de equações.

Exemplo 4. Encontre todas as soluções em inteiros positivos da equação $3^m + 7 = 2^n$

Analisando o resto módulo 3 do lado esquerdo, podemos concluir que $2^n \equiv 1 \pmod{3}$. Como $2^n \equiv (-1)^n \pmod{3}$, concluímos que n é par, ou seja, n = 2k, para algum $k \in \mathbb{N}$. Assim, como o lado direito é múltiplo de 4, podemos concluir que:

$$3^m \equiv -7 \pmod{4}$$
$$(-1)^m \equiv 1 \pmod{4}$$

Logo, m é par, ou seja, m=2t, para algum $t\in\mathbb{N}.$ Usando diferença de quadrados, podemos escrever:

$$7 = (2^k - 3^t)(2^k + 3^t).$$

Como 7 é primo, temos as seguintes opções:

$$7 = 2^{k} + 3^{t} \Rightarrow 2^{k} - 3^{t} = 1$$

 $1 = 2^{k} + 3^{t} \Rightarrow 2^{k} - 3^{t} = 7$

Em ambos os casos, $8 = 2^{k+1}$ e daí k = 2. Substituindo nas equações, obtemos solução apenas no primeiro caso com t = 1. Assim, (m, n) = (2, 4).

Exemplo 5. Encontre todas as soluções em inteiros positivos da equação $3 \cdot 2^m + 1 = n^2$.

Analisandoa equação módulo 3, $n^2 \equiv 1 \pmod{3}$ e assim, $n \equiv \pm 1 \pmod{3}$. No primeiro caso, se n = 3k + 2, temos $3 \cdot 2^m + 1 = n^2 = 9k^2 + 12k + 4$ e daí $2^m = (3k + 1)(k + 1)$. Como o lado esquerdo possui apenas um fatores 2, temos $3k + 1 = 2^i$, $k + 1 = 2^j$, com $j \leq i$. Daí, $3 \cdot 2^j - 2^i = 2$. Se j = i, temos $2^{i+1} = 2$ e consequentemente i = 0 produzindo k = 0 e (m, n) = (0, 2). Se j < i, temos j = 1 pois o lado esquerdo possui um único fator 2 e por conseguinte, i = 2, (m, n) = (3, 5). No segundo caso, quando n = 3k + 1, é tratado analogamente produzindo apenas a nova solução (m, n) = (4, 7).

Exemplo 6. Encontre todas as soluções da equação $x^2 - xy + y = 3$ em inteiros x, y.

Fixado o valor de y, podemos encontrar os valores de x usando a fórmula de Báskara. Como x é inteiro, o discriminante $y^2 - 4(y-3) = (y-2)^2 + 8$ deve ser um quadrado perfeito, digamos z^2 . Assim,

$$z^{2} - (y-2)^{2} = (z-y+2)(z+y-2) = 8.$$

Como z-y+2 e z+y-2 possuem a mesma paridade, o produto anterior dever $(\pm 2) \cdot (\pm 4)$. Em qualquer caso, somando ambos os termos, obtemos $2z=\pm 6$ e $z=\pm 3$. Logo, $y-2=\pm 1$. Substituindo os valores de y na equação original, obtemos os valores correspondentes para x. As soluções são: (x,y)=(2,1),(-1,1),(0,3),(3,3).

Exemplo 7. (Hungria 1969) Seja n um inteiro positivo. Prove que se $2+2\sqrt{28n^2+1}$ é um inteiro, então é um quadrado perfeito.

Necessariamente $\sqrt{28n^2+1}$ deve ser racional e para isso $28n^2+1$ deve ser um quadrado perfeito. Assim,

$$28n^2 + 1 = t^2$$

$$7n^2 = \left(\frac{t-1}{2}\right) \left(\frac{t+1}{2}\right)$$

Como 7 é primo, 7 | $\frac{t+1}{2}$ ou que 7 | $\frac{t-1}{2}$. No primeiro caso,

$$n^2 + 1 = \left(\frac{t+1}{14}\right) \left(\frac{t-1}{2}\right)$$

Além disso, como mdc((t-1)/2,(t+1)/2)=1, existem $a \in b$ tais que

$$a^2 = \frac{t+1}{14}$$
$$b^2 = \frac{t-1}{2}$$

Daí, $7a^2 - b^2 = 1$ e $b^2 \equiv -1 \pmod{7}$. Como quadrados perfeitos só podem deixar restos $0, 1, 2, 4 \pmod{7}$, esse caso não gera soluções. No segundo caso,

$$a^{2} = \frac{t+1}{2}$$
$$b^{2} = \frac{t-1}{14}.$$

Logo, $2 + 2\sqrt{28n^2 + 1} = 2 + 2t = 2 + 2(2a^2 - 1) = (2a)^2$.

Exemplo 8. (Reino Unido 1996) Encontre todas as soluções em inteiros não negativos x, y, z da equação:

$$2^x + 3^y = z^2.$$

Se y=0, então $2^x=z^2-1=(z-1)(z+1)$. Analisando a fatoração em primos, existem i,j, com i>j, tais que $z+1=2^i$ e $z-1=2^j$. A diferença das duas equações produz $2=2^i-2^j=2^j(2^{i-j}-1)$. Como o lado esquerdo possui apenas um fator $2,\ j=1$ e i-j=1. Nossa primeira solução encontrada é (x,y,z)=(3,0,3). Se y>0, $2^x\equiv z^2\pmod 3$. Como $2^x\equiv \pm 1\pmod 3$ e $z^2\equiv 0,1\pmod 3$ temos, $2^x\equiv z^2\equiv 1$. Isso implica que x é par, ou seja, x=2m. Fatorando, obtemos:

$$3^{y} = z^{2} - 2^{2m}$$
$$= (z - 2^{m})(z + 2^{m})$$

Novamente, analisando a fatoração em primos, existem l e k, com l < k, tais que $z - 2^m = 3^l, z + 2^m = 3^k$. A diferença das duas equações produz $2^{m+1} = 3^l(3^{k-l} - 1)$. Novamente

analisando a fatoração em primos, l=0 e $2^{m+1}=3^k-1$. Se m=0, temos k=1 e (x,y,z)=(0,1,2). Se m>0,

$$3^k = 1 \pmod{4}$$

 $(-1)^k = 1 \pmod{4}$.

e devemos ter k par, ou seja, existe t tal que k=2t. Fatorando novamente, $2^{m+1}=(3^k-1)(3^k+1)$. Escrevendo $3^k+1=2^p$ e $3^k-1=2^q$, temos $2=2^q(2^{p-q}-1)$. Veja que já tratamos essa equação no início e assim podemos concluir que q=1 e p-q=1. Produzindo a solução (x,y,z)=(4,2,5).

Nos próximos dois problemas, contruiremos soluções indutivamente.

Exemplo 9. (Bulgária) Prove que para qualquer número natural $n \ge 3$, existem números naturais ímpares x_n e y_n tais que $7x_n^2 + y_n^2 = 2^n$.

Para n=3, basta tomar $x_1=y_1=1$. Suponha que tenhamos encontrado x_k e y_k ímpares, satisfazendo

$$7x_k^2 + y_k^2 = 2^k.$$

Um dos números $(x_k + y_k)/2$, $(x_k - y_k)/2$ é ímpar e assim podemos escolher um deles de modo a satisfazer o enunciado para k + 1:

$$7\left(\frac{x_k \pm y_k}{2}\right)^2 + \left(\frac{x_k \mp y_k}{2}\right)^2 = 2(7x_k^2 + y_k^2) = 2^{k+1}.$$

Exemplo 10. Mostre que existe uma sequência infinita de inteiros positivos a_1, a_2, \ldots tais que $a_1^2 + a_2^2 + \ldots + a_n^2$ é um quadrado perfeito para todo n natural.

Definamos $a_1 = 3$. Suponha que a sequência já esteja definida para a_1, a_2, \ldots, a_k com

$$a_1^2 + a_2^2 + \ldots + a_k^2 = (2t+1)^2.$$

Vejamos que podemos definir o próximo termo de modo que a soma de todos os primeiros k+1 termos ao quadrado ainda seja um quadrado perfeito de um inteiro ímpar. Basta fazer $a_{k+1} = 2t^2 + 2t$. Veja que:

$$a_1^2 + a_2^2 + \dots + a_k^2 + a_{k+1}^2 = (2t+1)^2 + (2t^2 + 2t)^2$$

= $(2t^2 + 2t + 1)^2$.

que é novamente o quadrado de um ímpar.

Problemas Propostos

Problema 11. Encontre todas as soluções em inteiros x, y, z, t da equação:

$$x^2 + y^2 + z^2 = 8t - 1.$$

Problema 12. Encontre todas as soluções em inteiros positivos da equação

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 1.$$

Problema 13. Encontre todas as soluções em inteiros de $x^2 - y^2 - 1988$

Problema 14. Mostre que para todo inteiro z, existem inteiros x e y satisfazendo $x^2 - y^2 = z^3$

Problema 15. Encontre todas as soluções de $1 + x + x^2 + x^3 = 2^y$ em inteiros positivos x e y.

Problema 16. Mostre que a equação diofantina $5m^2 - 6mn + 7n^2 = 1988$, não possui solução nos inteiros.

Problema 17. (Rússia 1996) Sejam x, y, p, n, k números naturais tais que

$$x^n - y^n = p^k.$$

Prove que se n > 1 é impar, e p é um primo impar, então n é uma potência de p.

Problema 18. (Rússia 1997) Encontre todas as soluções inteiras da equação

$$(x^2 - y^2)^2 = 1 + 16y.$$

Problema 19. (OBM 2009) Prove que não existem inteiros positivos x e y tais que $x^3 + y^3 = 2^{2009}$.

Apêndice: A conjectura de Catalan

Em alguns dos problemas anteriores, nos deparamos com a questão de encontrarmos duas potências perfeitas consecutivas não triviais. As únicas soluções que apareceram foram $2^3 = 8$ e $3^2 = 9$. Em 1844, Eugène Catalan conjecturou que essa seria a única solução. Recentemente, tal conjectura se mostrou verdadeira atráves do:

Teorema 20. (Mihalnescu - 2002)Existe uma única solução nos números naturais de

$$x^a - y^b = 1,$$

 $com \ x, a, y, b > 1 \ que \ \'e \ (x, y, a, b) = (3, 2, 2, 3).$

Problema 21. Encontre toda as soluções em inteiros positivos da seguinte equação diofantina:

$$2u^2 = x^4 + x$$
.